TMEM132: an ancient architecture of cohesin and immunoglobulin domains define a new family of neural adhesion molecules

نویسندگان

  • Luis Sánchez-Pulido
  • Chris P. Ponting
چکیده

Summary The molecular functions of TMEM132 genes remain poorly understood and under-investigated despite their mutations associated with non-syndromic hearing loss, panic disorder and cancer. Here we show the full domain architecture of human TMEM132 family proteins solved using in-depth sequence and structural analysis. We reveal them to be five previously unappreciated cell adhesion molecules whose domain architecture has an early holozoan origin prior to the emergence of choanoflagellates and metazoa. The extra-cellular portions of TMEM132 proteins contain five conserved domains including three tandem immunoglobulin domains, and a cohesin domain homologue, the first such domain found in animals. These findings strongly predict a cellular adhesion function for TMEM132 family, connecting the extracellular medium with the intracellular actin cytoskeleton. Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homophilic adhesion between Ig superfamily carcinoembryonic antigen molecules involves double reciprocal bonds

Both carcinoembryonic antigen (CEA) and neural cell adhesion molecule (NCAM) belong to the immunoglobulin supergene family and have been demonstrated to function as homotypic Ca(++)-independent intercellular adhesion molecules. CEA and NCAM cannot associate heterotypically indicating that they have different binding specificities. To define the domains of CEA involved in homotypic interaction, ...

متن کامل

Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons

Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF re...

متن کامل

Biliary glycoprotein, a member of the immunoglobulin supergene family, functions in vitro as a Ca2(+)-dependent intercellular adhesion molecule.

Intercellular adhesion molecules can be classified as Ca2+ dependent or Ca2+ independent. This classification has significant functional implications regarding cellular interactions. The best characterized Ca2(+)-dependent adhesion molecules, such as L-CAM or E-cadherin, belong to the family of closely related cell surface molecules called cadherins. On the other hand, those immunoglobulin supe...

متن کامل

The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules.

The receptor protein tyrosine phosphatases gamma (PTPRG) and zeta (PTPRZ) are expressed primarily in the nervous system and mediate cell adhesion and signaling events during development. We report here the crystal structures of the carbonic anhydrase-like domains of PTPRZ and PTPRG and show that these domains interact directly with the second and third immunoglobulin repeats of the members of t...

متن کامل

Specificity of intercellular adhesion mediated by various members of the immunoglobulin supergene family.

The immunoglobulin supergene family members have been shown to be involved in cell-cell recognition and interaction during cell growth and differentiation. Neural cell adhesion molecule, myelin-associated glycoprotein, and carcinoembryonic antigen (CEA) are immunoglobulin supergene family members which can mediate cell adhesion. We show here that nonspecific cross-reacting antigen (NCA), a clos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2018